

Contenido

- El mundo del futuro
- Repensando la educación
- El cambio de paradigma de la educación superior
- La ingeniería y el futuro
- El estado de la ingeniería mexicana
- Retos para incrementar exponencialmente la calidad y pertinencia de la ingeniería mexicana
- Reflexiones finales

El mundo del futuro

- Cambios profundos y rápidos
 - Complejos y contradictorios, producen tensiones
 - · Crecimiento demográfico, estabilidad mundial
- Globalización (regionalización)
- Convergencia en tecnologías (en el ámbito físico, químico, biológico); era digital
 - Tecnologías exponenciales y la 4ª Revolución Industrial
- Los grandes retos globales (energía, sostenibilidad, ciberseguridad), requieren soluciones globales con adaptaciones locales
 - Desigualdades y exclusión

Repensando la educación - 1

- Debe centrarse en:
 - Desarrollo sostenible
 - · Desigualdad, exclusión, vulnerabilidad y violencia
 - · Patrones de producción y consumo y cambio climático
 - · Derechos humanos y empoderamiento de la mujer
 - Reafirmar la esencia humanista de la educación: dignificar
 - Principios morales y éticos contra la desigualdad, exclusión, violencia y discriminación
 - Enfoque flexible y abierto que facilite alcanzar el potencial de una vida digna y sostenible

UNESCO, 2015

Repensando la educación - 2

- Debe centrarse en:
 - Políticas globales y locales en un mundo complejo
 - · Articular educación y desarrollo de la sociedad
 - · Afianzar la identidad en los países
 - Reconciliar al Estado, sociedad y mercado en sus papeles en la educación y en el financiamiento
 - Insistir que la educación y el conocimiento son bienes comunes de alcance global
 - Creación, adquisición, validación y uso son parte de un colectivo social
 - El conocimiento es parte de la herencia común de la humanidad

UNESCO, 2015

Diagnóstico de la educación superior

- Costo creciente
- Falta de productividad
- Aversión al riesgo
- Lentitud de reacción frente a necesidades sociales

Según A. Piscitelli

Nuevos modelos de ES

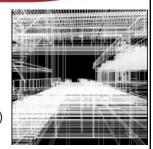
- Blended learning
- Pocas disciplinas
- Abolición de recesos (verano)
- Orientación: empleabilidad

- Eficiencia
- Reposicionamiento valor
- Economías de escala
- Modularidad

De M. Sandoval

Trayectoria en la ES

- Inteligencia social colaborativa
- Nuevos alfabetismos transmedia
- · Pensamiento de diseño
- · Pensamiento computacional
- Pensamiento adaptativo
- · Gestión de carga cognitiva



De G. Escorcia

Nuevos modelos en la ES

- Status quo no es una opción
 - Mercado laboral exige adaptación de egresados
 - Emprendimiento limitado
 - Drástico incremento en patentes
 - Nuevas organizaciones asociadas (spin-offs)
 - Estrategia de acción social

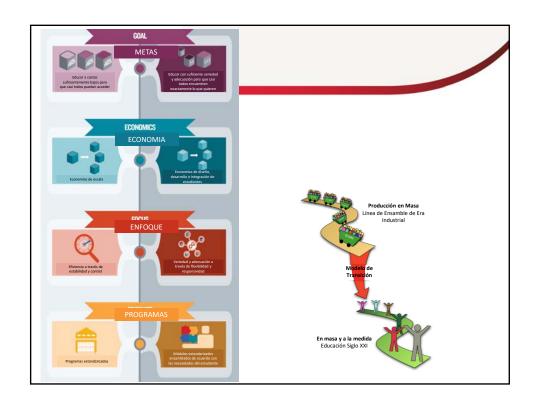
Innovación

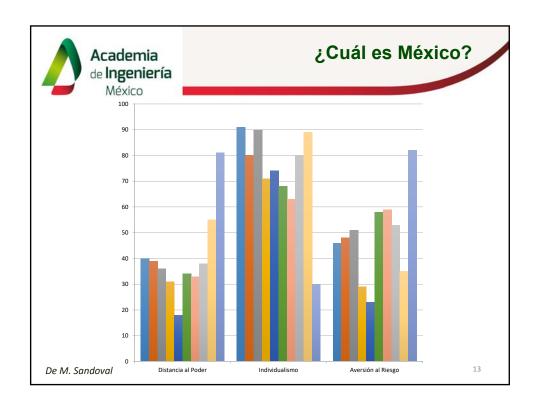
- Impacto digital conectividad, convergencia de medios
- · Economías emergentes y ejes de talento
- Creatividad y género
- Readaptación y relevancia en oferta académica

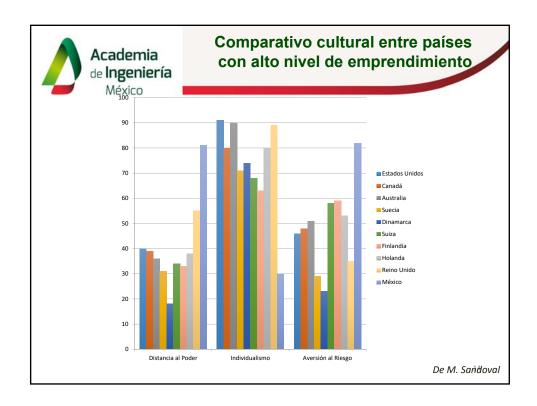
De G. Escorcia

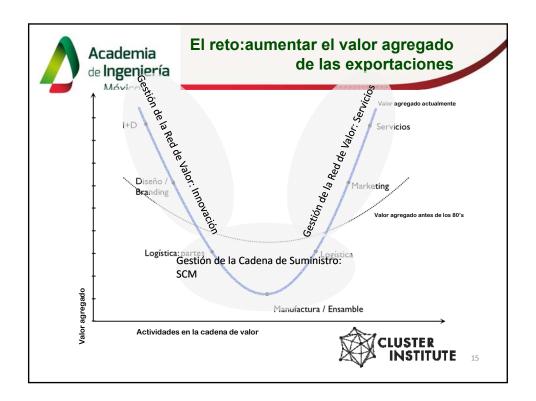
Reinvención institucional en la ES

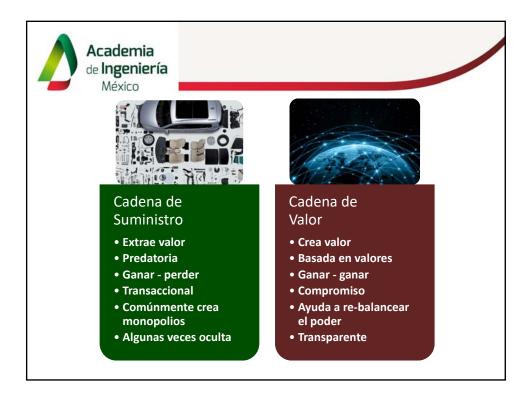
- Innovación
- Autonomía
- Creatividad
- Interoperabilidad
- Colaboración

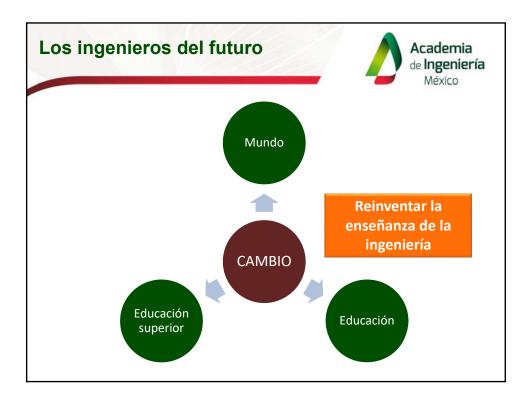

- Democratización
- Flexibilidad
- Gobernabilidad
- Identidad
- Talento identificado









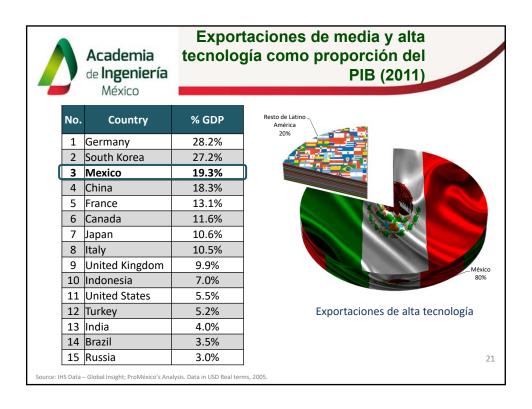


Los ingenieros del futuro - 1

Los ingenieros del futuro deben:

- Entender cómo funcionan las cosas y cómo funciona el mundo
 - Enfoque de sistemas, equipos multidisciplinarios, trabajo interdisciplinario, manejo del riesgo e incertidumbre
- Ser actores de procesos creativos e innovadores para resolver problemas
 - Cultura de la innovación; capacidad de comunicación
- Ser técnicamente excelentes e innovadores y estar preparados para trabajar en una economía mundial en constante cambio y con gran incertidumbre
 - Interacción social

Los ingenieros del futuro - 2


Los ingenieros del futuro deben:

- Desempeñarse éticamente
- Ser capaces de articular, de manera elocuente, la importancia de la ingeniería a muchas cuestiones de política pública
 - La participación del ingeniero en política pública no es un fin en sí mismo

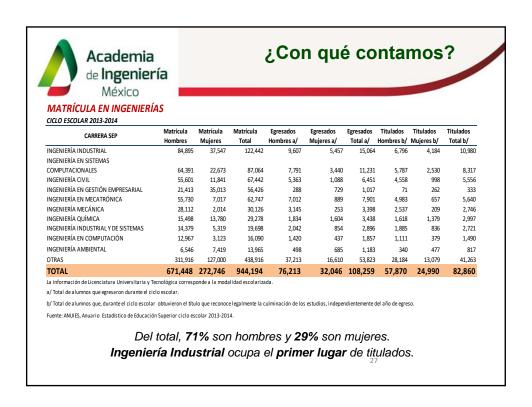
El contexto de México

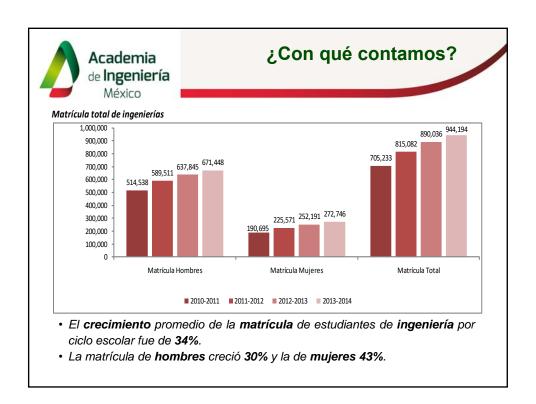
- Modelo de economía abierta orientada principalmente a la exportación
 - En 2014, se exportaron 398,000 MUSD -80% manufacturas,
 53% de tecnología media y avanzada- (CEEG, 2016)
- Contenido nacional es bajo: 30% en la industria automotriz, la más avanzada
- Es necesario extender las cadenas de proveeduría nacionales para insertarlas en las cadenas globales de valor
 - Beneficios: aumento de valor, trabajos bien remunerados, país más competitivo y atractivo, profesionalización de Pymes, estándares internacionales.

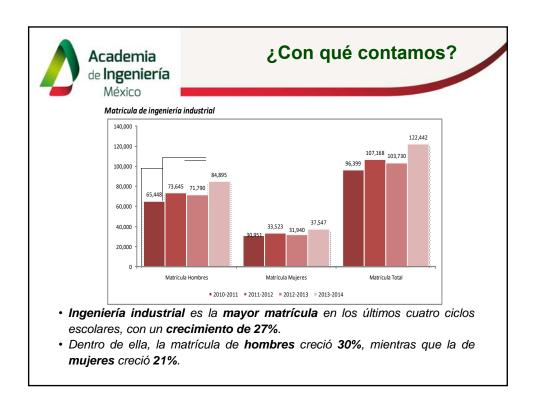
El estado de la ingeniería mexicana

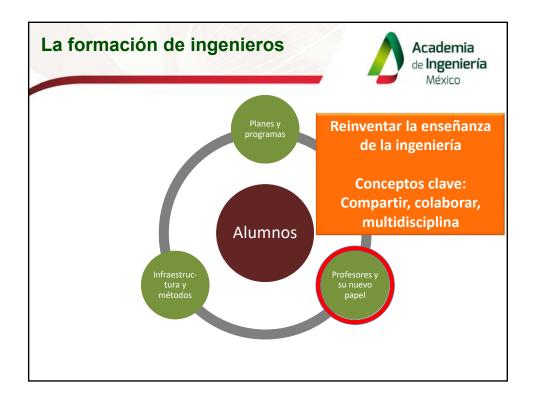
- Es cierto que la ingeniería mexicana no pasa por sus mejores momentos y requiere urgentemente renovarse y, en varios aspectos, reinventarse.
- Se **necesita** urgentemente **definir** cómo se quiere que sea la **ingeniería mexicana** de este siglo.
- Propuesta:

Lograr una ingeniería innovadora, competitiva, relevante y protagónica, basada en el conocimiento y la integridad, que promoverá el desarrollo social y económico sustentable y equitativo




El papel de la ingeniería en el futuro de México


- 1. La práctica de la ingeniería mexicana, deberá estar basada en la calidad y la innovación, para un presente y futuro exitosos.
- 2. El debate debe ser abierto y permitir la generación de nuevas ideas.
- 3. Los ingenieros deben ser capaces de crear riqueza y bienestar comunitario, de reducir las desigualdades sociales, y empoderar a quienes están en desventaja.
- 4. Urge **fortalecer** las **instituciones** que hemos forjado y administrarlas de buena manera.



Hacia el crecimiento exponencial de la calidad del aprendizaje de la ingeniería - 1

¿Qué deben hacer las IES?

- Mejorar el **reclutamiento y retención** de estudiantes
- Hacer la experiencia más significativa e interesante
- Lograr que los cambios en la enseñanza ofrezcan un contexto más amplio de la profesión
- Presentar la "esencia" de la ingeniería desde el inicio de sus estudios; enfoque CDIO — Conceive, Design, Implement, Operate
- Utilizar el "análisis de casos de éxito y fracaso" o "problemas" como una herramienta de aprendizaje
 - Capacitar a profesores y directivos, adecuar planes y programas, promover desde educación básica

Hacia el crecimiento exponencial de la calidad del aprendizaje de la ingeniería - 2

¿Qué deben hacer las IES? Cont.

- Conectar la enseñanza en ingeniería con las necesidades del sector productivo
 - Nueva generación de docentes; alianzas con la industria: Alianza FiiDEM; estancias en la industria (planes y programas adecuados, programas de trabajo y estímulos, inventario de necesidades, programa de estancias de profesores, incentivos fiscales....)
- Promover y alentar que alumnos estudien posgrado
- Formar a sus alumnos para estudiar de por vida

Hacia el crecimiento exponencial de la calidad del aprendizaje de la ingeniería - 3

¿Qué deben hacer las IES? Cont.

- Encabezar un esfuerzo para mejorar la educación en matemáticas, ciencias e ingeniería en niveles inferiores
- Eliminar requisitos onerosos para titulación
 - Eliminar la tesis e incluir las capacidades y conocimientos que se esperan al elaborar la tesis en los cursos
- Establecer una cultura de la innovación
 - Promover el desarrollo de la capacidad de agencia y emprendimiento de alumnos

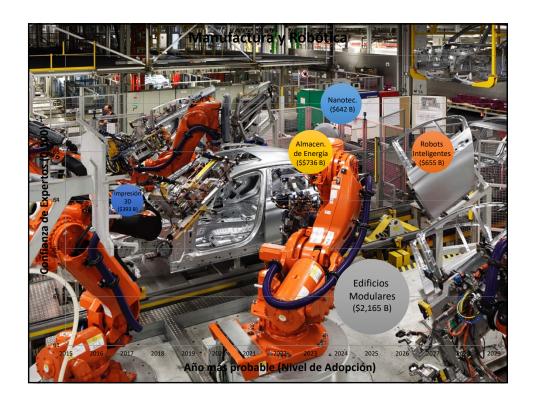
Hacia el crecimiento exponencial de la calidad del aprendizaje de la ingeniería - 4

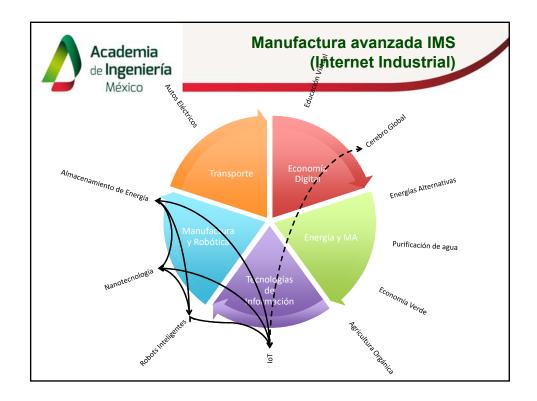
¿Qué deben hacer las IES? Cont.

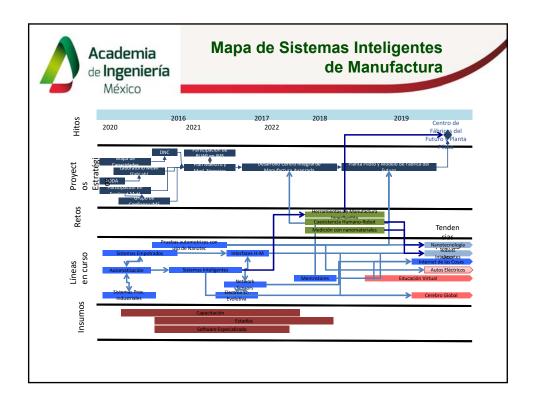
- Incrementar de manera decidida la vinculación internacional
 - Becas, intercambios, proyectos conjuntos, adquisición de otras lenguas (INGLÉS)
- Participar en esfuerzos para mejorar la comprensión y prestigio de la ingeniería
 - Desarrollar imágenes icónicas, simples

Hacia el crecimiento exponencial de la calidad del aprendizaje de la ingeniería - 5

¿Qué deben hacer las IES? Cont.


- Profesores: son el factor clave para mejorar la calidad y pertinencia
 - Contratar y retener a los mejores C1
 - Capacitar C2
 - Desarrollar nuevas normas de evaluación de los docentes
 - Para aquellos con experiencia profesional, para estimular la superación
 - Implantar programas de superación y actualización mediante vinculación nacional e internacional – C3
 - Becas, proyectos de COLABORACIÓN (CEMIE, Alianza FiiDEM, industria)


Hacia el crecimiento exponencial de la calidad del aprendizaje de la ingeniería - 6



¿Qué deben hacer las instancias reguladoras?

- Fomentar la acreditación internacional
 - Reconocimiento de procesos de acreditación
- Promover la acreditación de programas de maestrías
 - Que reconozcan movilidad, educación a distancia, y sea flexible basada en resultados
- Impulsar la certificación profesional de los ingenieros
 - Dirigida a grupos pequeños con la mayor responsabilidad en sus instituciones

Alianza para la Formación e Investigación de la Infraestructura para el Desarrollo de México (Alianza FiiDEM) – un ejemplo de vinculación

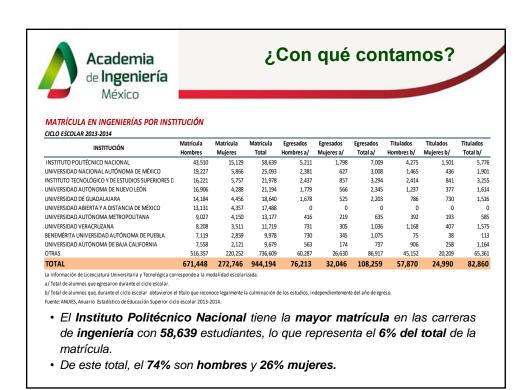
- Esfuerzo promovido por la UNAM para:
 - Fortalecer la ingeniería y la infraestructura
 - Fomentar la innovación del sector y
 - Promover procesos de vinculación IES empleadores.
- Asociación Civil de nacionalidad mexicana, sin fines de lucro ni preponderantemente económicos, busca:
 - Articular, vincular y facilitar la colaboración IES-Gob.-IP-Asoc. Prof.
 - Formación y actualización de especialistas en infraestructura
 - Capacidades de I&DT+i mediante la creación de Centros de Formación e Innovación (CeFI)
 - Inteligencia tecnológica y administración del conocimiento
 - Con un enfoque importante en la sostenibilidad y el cambio climático

Observatorio de la calidad de la formación de ingenieros

Generar un modelo de **seguimiento de la calidad en la educación** de las carreras en ingeniería en México a lo largo de todo el **ciclo integral**, desde la formación hasta el ejercicio de la profesión de los ingenieros.

Específicos:

- Estudiar mecanismos para **asegurar el cumplimiento** de lo que las IES están ofreciendo, respetando la autonomía de las escuelas que la tengan.
- Traducir, en elementos fácilmente manejables, **indicadores** dentro de un procedimiento de evaluación para que sea operativamente funcional (tasas de retención, eficiencia terminal, entre otros).
- Desarrollar una gestión académica eficaz y eficiente.
- Autoevaluar permanentemente la calidad de la enseñanza impartida.
- Fomentar el **intercambio y cooperación** entre las universidades, tanto nacional como internacionalmente.
- Brindar información fundamental para rediseñar y mejorar el Programa de Reconocimiento de Validez Oficial de Estudios Superiores Federales y Estatales (REVOE).


43

Referencias

- Academia de Ingeniería de México, AIM (2014). Plan estratégico 2014-2018. Plan para incrementar la competitividad, innovación y relevancia de la ingeniería mexicana
- Academia de Ingeniería de México, AIM (2014). Coloquio entre empleadores y formadores.
- American Society of Civil Engineers, ASCE (2007). The vision for civil engineering in 2025.
- Council of Academies of Engineering, Technology and Science, CAETS (2013).
 Educating engineers.
- Consejo de Ejecutivo de Empresas Globales, CEEG (2016). Proyecto de desarrollo de cadenas de valor para empresas del CEEG.
- National Academy of Engineering, NAE (2015). Educación del ingeniero del año 2020: adaptación de la educación en ingeniería para el nuevo siglo.
- Rascón, O., (2010). Prospectiva de la enseñanza de la ingeniería en México. IV Congreso Nacional de la Academia de Ingeniería de México.

¿Con qué contamos?

MATRÍCULA EN INGENIERÍAS POR INSTITUCIÓN

INSTITUCIÓN	2010-2011	2011-2012	2012-2013	2013-2014	incremento %
IPN	52,123	54,622	56,649	58,639	12.5
UNAM	22,165	23,604	24,205	25,093	13.2
ITESM	19,934	20,958	21,444	21,978	10.3
UANL	17,510	18,655	20,011	21,194	21.0
UDEG	15,738	16,733	17,847	18,640	18.4
U. ABIERTA Y A DISTANCIA DE MÉXICO	-	19,707	22,148	17,488	-
UAM	12,300	12,663	12,861	13,177	7.1
OTRAS	565,463	648,140	714,871	767,985	35.8
TOTAL	705,233	815,082	890,036	944,194	33.9

- El IPN y la UNAM, incrementaron en promedio 13% su matrícula de estudiantes en ingeniería en los últimos cuatro ciclos escolares.
- Otras instituciones avanzan en mayor medida, con un incremento de 34%.

¿Con qué contamos?

MATRÍCULA EN INGENIERÍAS POR ENTIDAD FEDERATIVA

CICLO ESCOLAR 2013-2014

Entidad federativa	Matrícula	Matrícula	Matrícula	Egresados	Egresados	Egresados	Titulados	Titulados	Titulados Total
	Hombres	Mujeres	Total	Hombres a/	Mujeres a/	Total a/	Hombres b/	Mujeres b/	b/
DISTRITO FEDERAL	97,031	35,012	132,043	8,838	2,951	11,789	6,685	2,250	8,935
MÉXICO	62,799	25,703	88,502	7,291	3,503	10,794	5,517	2,674	8,191
VERACRUZ	53,368	28,029	81,397	5,441	2,716	8,157	4,285	1,979	6,264
PUEBLA	34,984	14,964	49,948	4,285	2,141	6,426	2,204	1,046	3,250
JALISCO	36,741	11,782	48,523	4,166	1,216	5,382	3,232	1,736	4,968
OTRAS	386,525	157,256	543,781	46,192	19,519	65,711	35,947	15,305	51,252
TOTAL	671,448	272,746	944,194	76,213	32,046	108,259	57,870	24,990	82,860

La información de Licenciatura Universitaria y Tecnológica corresponde a la modalidad escolarizada a/ Total de alumnos que egresaron durante el ciclo escolar.

b/Total de alumnos que, durante el ciclo escolar obtuvieron el título que reconoce legalmente la culminación de los estudios, independientemente del año de egreso. Fuente: ANUIES, Anuario Estadístico de Educación Superior ciclo escolar 2013-2014.

- El Distrito Federal fue la entidad federativa con mayor concentración de alumnos en las carreras de ingeniería, ascendiendo a 132,043 alumnos, de los cuales el 73% son hombres y el 27% mujeres.
- En los **Estados**, ha **aumentado** en un promedio de **33**% la **matrícula** de alumnos de **ingeniería** en los últimos cuatro ciclos escolares.