DISEÑO DE PLATAFORMAS TECNOLÓGICAS PARA ANALÍTICA DE BIG DATA EN SISTEMAS CIBER-FÍSICOS INDUSTRIALES

Autores/as

  • Oscar Mario Rodríguez Elías Tecnológico Nacional de México / I. T. de Hermosillo
  • Eduardo Antonio Hinojosa Palafox Tecnológico Nacional de México / I. T. de Hermosillo
  • José Antonio Hoyo Montaño Tecnológico Nacional de México / I. T. de Hermosillo
  • Sonia Regina Meneses Mendoza Tecnológico Nacional de México / I. T. de Hermosillo

Resumen

A través de los sistemas de analítica industrial es posible identificar ideas, patrones o modelos útiles necesarios para la innovación sostenible. la creación de plataformas tecnológicas para promover servicios de optimización enfrenta los desafíos de los sistemas ciberfísicos industriales que deben considerar un enfoque novedoso para el diseño de una arquitectura de referencia que integre la convergencia de tecnologías en la analítica de Big Data industrial y el aprendizaje máquina. Este trabajo de investigación presenta un enfoque metodológico para el diseño de una arquitectura de referencia para analítica de Big Data industrial que provee servicios de optimización para la detección temprana de fallas en la industria 4.0 a través de los métodos basados en datos. La arquitectura de referencia fue validada en un escenario de Big Data industrial que incorpora dos servicios basados en almacenamiento HDFS. El primer servicio, Data Analytics Studio (DAS), extrae información basada en consultas SQL que permite generar vistas y nuevas tablas. El segundo servicio permite el análisis con Spark mediante un cuaderno de trabajo Zeppelin basado en la web para el análisis de datos en forma interactiva. Finalmente,  se ha definido un marco de trabajo que sirve para agilizar y facilitar el diseño de soluciones de Big Data industrial, con una metodología de diseño para una arquitectura que permita integrar fases y herramientas para brindar soluciones a escenarios de uso concretos.

Citas

Atat, R., Liu, L., Wu, J., Li, G., Ye, C., & Yang, Y. (2018). Big Data Meet Cyber-Physical Systems: A Panoramic Survey. IEEE Access, 6, 73603–73636. https://doi.org/10.1109/ACCESS.2018.2878681

Bai, Y., Sun, Z., Deng, J., Li, L., Long, J., & Li, C. (2017). Manufacturing quality prediction using intelligent learning approaches: A comparative study. Sustainability, 10(1), 1–15. https://doi.org/10.3390/su10010085

Bass, L., Clements, P., & Kazman, R. (2013). Software Architecture in Practice, Third Edit. En Design (Upper Sadd). Addison Wesley.

Bass, L., Klein, M., & Bachmann, F. (2002). Quality attribute design primitives and the attribute driven design method. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2290, 169–186. https://doi.org/10.1007/3-540-47833-7_17

Capilla, R., Jansen, A., Tang, A., Avgeriou, P., & Babar, M. A. (2016). 10 years of software architecture knowledge management: Practice and future. Journal of Systems and Software, 116, 191–205. https://doi.org/10.1016/j.jss.2015.08.054

Drath, R., & Horch, A. (2014). Industrie 4.0: Hit or hype? [Industry Forum]. IEEE Industrial Electronics Magazine, 8(2), 56–58. https://doi.org/10.1109/MIE.2014.2312079

Givehchi, O., Trsek, H., & Jasperneite, J. (2013). Cloud computing for industrial automation systems - A comprehensive overview. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 1–4. https://doi.org/10.1109/ETFA.2013.6648080

Gustavsson, M., & Wänström, C. (2009). Assessing information quality in manufacturing planning and control processes. International Journal of Quality and Reliability Management, 26(4), 325–340. https://doi.org/10.1108/02656710910950333

Hinojosa-Palafox, E. A., Rodriguez-Elias, O. M., Hoyo-Montano, J. A., & Pacheco-Ramirez, J. H. (2019). Towards an Architectural Design Framework for Data Management in Industry 4.0. Proceedings - 2019 7th International Conference in Software Engineering Research and Innovation, CONISOFT 2019, 191–200. https://doi.org/10.1109/CONISOFT.2019.00035

Hinojosa-Palafox, E. A., Rodríguez-Elías, O. M., Hoyo-Montaño, J. A., & Pacheco-Ramírez, J. H. (2020). Trends and Challenges of Data Management in Industry 4.0. En S. X. Zhang J., Dresner M., Zhang R., Hua G. (Ed.), 9Zhang J., Dresner M., Zhang R., Hua G., Shang X. (eds) LISS2019. Springer Singapore. https://doi.org/https://doi.org/10.1007/978-981-15-5682-1_16

Huang, B., Li, C., Yin, C., & Zhao, X. (2013). Cloud manufacturing service platform for small- and medium-sized enterprises. International Journal of Advanced Manufacturing Technology, 65(9–12), 1261–1272. https://doi.org/10.1007/s00170-012-4255-4

Jeschke, S., Brecher, C., Meisen, T., Özdemir, D., & Eschert, T. (2017). Industrial Internet of Things and Cyber Manufacturing Systems (pp. 3–19). https://doi.org/10.1007/978-3-319-42559-7_1

Kazman, R., Klein, M., & Clements, P. (2000). ATAM?: Method for Architecture Evaluation. Cmusei, 4(August), 83. https://doi.org/(CMU/SEI-2000-TR-004, ADA382629)

Lade, P., Ghosh, R., & Srinivasan, S. (2017). Manufacturing analytics and industrial Internet of Things. IEEE Intelligent Systems, 32(3), 74–79. https://doi.org/10.1109/MIS.2017.49

Lee, J., Bagheri, B., & Kao, H. A. (2015a). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3(October 2017), 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001

Lee, J., Bagheri, B., & Kao, H. A. (2015b). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3(December), 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001

Lee, J., Bagheri, B., & Kao, H.-A. (2014). Recent Advances and Trends of Cyber-Physical Systems and Big Data Analytics in Industrial Informatics. Int. Conference on Industrial Informatics (INDIN), November 2015, 1–6. https://doi.org/10.13140/2.1.1464.1920

Li, J., Tao, F., Cheng, Y., & Zhao, L. (2015). Big Data in product lifecycle management. International Journal of Advanced Manufacturing Technology, 81(1–4), 667–684. https://doi.org/10.1007/s00170-015-7151-x

Ochs, Th., & Riemann, U. (2017). Smart Manufacturing in the Internet of Things Era. En Cham (Ed.), In Internet of Things and Big Data Analytics Toward Next-Generation Intelligence (pp. 199–217). Springer. https://doi.org/10.1007/978-3-319-60435-0_8

O’Donovan, P., Leahy, K., Bruton, K., & O’Sullivan, D. T. J. (2015). Big data in manufacturing: a systematic mapping study. Journal of Big Data, 2(1), 20. https://doi.org/10.1186/s40537-015-0028-x

Prognostics and Health Management Society. (2015). PHM data challenge 2015. https://www.phmsociety.org/events/conference/phm/15/data-challenge

Raza, Ali; Zafar, Shaista; Rahman, Saeed Ur; Khattak, U. (2019). Software Architecture Evaluation Methods: A Comparative Study. International Journal of Computing and Communication Networks, 1(2), 1–9.

Sarnovsky, M., Bednar, P., & Smatana, M. (2018). Big Data Processing and Analytics Platform Architecture for Process Industry Factories. Big Data and Cognitive Computing, 2(1), 3. https://doi.org/10.3390/bdcc2010003

Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157–169. https://doi.org/10.1016/j.jmsy.2018.01.006

Vora, R., Garala, K., & Raval, P. (2016). An era of big data on cloud computing services as utility: 360° of review, challenges and unsolved exploration problems. Smart Innovation, Systems and Technologies, 51, 563–574. https://doi.org/10.1007/978-3-319-30927-9_57

Zezulka, F., Marcon, P., Vesely, I., & Sajdl, O. (2016). Industry 4.0 – An Introduction in the phenomenon. FAC-PapersOnLine, 49(25), 8–12. https://doi.org/10.1016/j.ifacol.2016.12.002

Descargas

Publicado

2023-06-21

Número

Sección

Artículos de Eventos Académicos